Covariate Shift - Consequences and good practice

Covariate shift, re-weight training data, active sampling

Joyce Wang | Software Engineer
Sep 2017
Motivation

What is going on here?

Validation Accuracy = 0.96

Query Accuracy = 0.67
Outline

● What is covariate shift?
 ○ why would it occur?
 ○ what consequence would it have?

● How to detect covariate shift?
 ○ visualization method
 ○ quantitative method

● Strategies to handle covariate shift
 ○ training data reweighting
 ○ active learning
Covariate Shift

When the distribution on training and test/query sets do not match, we are facing *covariate shift*, or *sample selection bias*.

Against fundamental assumption:

Both the training and query data should be drawn from the same population / distribution.
Distribution Mismatch

Training data and query data are drawn from almost the **same** population

Training data and query data are drawn from completely **different** population
Covariate Shift - Commonplace

Lack of randomness

Inadequate samples

Biased sampling rules
Covariate Shift - Consequence

- Overfitting on training examples
- Unreliable predictions

Example: binary classification
Detect Covariate Shift
Detect Covariate Shift

- Visualization
- Membership modelling
- Uncertainty quantification
Visualize Training and Query Data

What if I have high-dimensional data?

- Per dimension visualization
- Dimensionality reduction (PCA, t-SNE)

We need more robust methods.
We apply a model to predict the probability of a new point being a member of training set.

For example, one-class SVM could classify new data as similar or different to the training set.
Uncertainty Quantification

1. Fit a *probabilistic* model to training set

2. Every prediction has uncertainty (confidence interval) associated with it

3. Determine covariate shift with uncertainty of predictions
Uncertainty Quantification

low uncertainty \rightarrow similar to training dataset

high uncertainty \rightarrow not similar to training dataset
Handle Covariate Shift
Handle Covariate Shift

- Training Sample Reweighting
 - Make the distribution of training data look like the distribution of query data.

- Active Sampling
 - Help model gain understanding about query data and learn effectively.
Sample Reweighting

- Build a classifier to classify training and query sets
 - e.g. logistic regression

Color training points by the probability of being in query set

| Low | Median | High |
Sample Reweighting

- Reweight every training point in learning process.

<table>
<thead>
<tr>
<th>Training samples</th>
<th>Probability of being in query set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9872</td>
</tr>
<tr>
<td>2</td>
<td>0.8754</td>
</tr>
<tr>
<td>3</td>
<td>0.7913</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n-1</td>
<td>0.2877</td>
</tr>
<tr>
<td>n</td>
<td>0.1867</td>
</tr>
</tbody>
</table>
Overlap is essential to apply sample re-weighting.
Active Learning

- Train a **probabilistic** model.
- Predict query set with trained model.

Find the query point with *that is expected to most improve the model*

- Get the *target value* for that most useful point.
- Put the point into training set.
Active Learning - Demo
Comparison of Strategies for Handling Covariate Shift

<table>
<thead>
<tr>
<th></th>
<th>Sample Reweighting</th>
<th>Active Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>● achievable if you cannot get more samples</td>
<td>● no need for overlap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● gain more understanding about query data</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>● need overlap between training and query sets</td>
<td>● not achievable if you cannot get more samples</td>
</tr>
<tr>
<td></td>
<td>● less understanding on data</td>
<td></td>
</tr>
</tbody>
</table>
Thank you

twitter @joycexinyuewang
email joyce.wang@data61.csiro.au
Reference

- **Density Ratio Estimation in Machine Learning**

- **Correcting Sample Selection Bias by Unlabeled Data**
Uncertainty Quantification

probability of positive label
Sample Reweighting

- Reweight every training point in minimizing loss function.

\[L(\theta) = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} J(y_i, \hat{y}_i(\theta)) \]

where
- \(L(\theta) \) is the loss function we aim to minimize with respect to \(\theta \)
- \(J(y_i, \hat{y}_i) \) is the cost associated with a single sample
- \(y_i \) is the actual target value for training sample \(i \)
- \(\hat{y}_i \) is the predicted target value of training sample \(i \)

<table>
<thead>
<tr>
<th>Training samples</th>
<th>Probability of being in query set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9872</td>
</tr>
<tr>
<td>2</td>
<td>0.8754</td>
</tr>
<tr>
<td>3</td>
<td>0.7913</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n-1</td>
<td>0.2877</td>
</tr>
<tr>
<td>n</td>
<td>0.1867</td>
</tr>
</tbody>
</table>
Acquisition Function

- Reduce the maximum uncertainty
 \[
 \arg\max_x \left| \text{Var}\{f(x)\} \right| \quad \text{where } f(x) = \hat{y}
 \]

- Reduce the maximum upper confidence bound
 \[
 \arg\max_x \left| f(x) + \kappa \sigma(x) \right| \quad \text{where } f(x) = \hat{y}
 \]

- Reduce the total uncertainty
 \[
 \arg\max_x \int_x \text{Var}\{f^*(x)\} \quad \text{where } f^*(x) = \hat{y} \quad \text{after including new sample}
 \]

- Utility function if policy is known
Detect Covariate Shift - Comparison

<table>
<thead>
<tr>
<th></th>
<th>Visualization</th>
<th>Membership Modelling</th>
<th>Uncertainty Quantification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantage</td>
<td>quick</td>
<td>informative</td>
<td>informative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>quantitative</td>
<td>quantitative</td>
</tr>
<tr>
<td>Disadvantage</td>
<td>subjective</td>
<td>sensitive to tuning</td>
<td>difficult to work</td>
</tr>
<tr>
<td></td>
<td>open to</td>
<td>parameters</td>
<td>with large-size data</td>
</tr>
<tr>
<td></td>
<td>interpretation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sample Reweighting

- Apply trained classifier to obtain the probability of each training point being inside query set

Use cross-validation to avoid over-fitting.

<table>
<thead>
<tr>
<th>Training samples</th>
<th>Probability of being in query set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9872</td>
</tr>
<tr>
<td>2</td>
<td>0.8754</td>
</tr>
<tr>
<td>3</td>
<td>0.7913</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n-1</td>
<td>0.2877</td>
</tr>
<tr>
<td>n</td>
<td>0.1867</td>
</tr>
</tbody>
</table>
Hold-out / Development set

Apply model to predict the y value

Glossary

Training data

Split

90% Training set

10% Hold-out / Development set

Test data

used to

Validate model (optional)

Query data
Sample Reweighting

- Reweight every training point in learning process.